
A Note on a Maximum Principle 
for the DuFort-Frankel Difference Equation 

By Paul Gordon 

Consider the parabolic partial differential equation 

(1) au/at = a &2u/9x2 

where a- is a positive constant. 
Suppose initial and boundary conditions are given as follows: 

u(0, x) = fi(x): O< x < x, 
(2) U (t, O) = f2(t) 0 < t < t1 

u(t,x1) =f3(t): 0 < t < t . 

Suppose that in the region 0 < t < ti, 0 ? x ? xi, this data determines a continu- 
ously differentiable solution, u(t, x), of Eq. (1). Let 

(3) m = max [If,(x)J, If2(t)J, Jf3(t)J] . 
x, t 

It is well known that u(t, x) satisfies the following boundedness property: 

(4) Iu(t,x)J ?m. 

A difference equation representation for Eq. (1) would be expected, if it is to be 
convergent, to satisfy some kind of a bound similar to Eq. (3). The usual explicit and 
implicit difference equations satisfy precisely this bound [3, p. 13 and p. 47]. It is 
also well known that the DuFort-Frankel scheme satisfies some kind of a maximum 
principle. If one works with the L2-norm, the form of the bound is quite clear [3, p. 
83]. With respect to the maximum norm, it is also known that a maximum principle 
holds [2, p. 127], but its form is somewhat obscure. The purpose of this note is to 
derive the maximum principle satisfied by the DuFort-Frankel scheme in a relatively 
elementary fashion and to exhibit the dependence of this bound on the initial data. 

The DuFort-Frankel difference equation can be written as follows: 

(5) (1 + q) UW" = (1 - q) U1w + q (U> + U>1) 

where 

q = 2o-At/AX2, U7 = U(nAt, jAx). 

Let us suppose that Ax is specified as some function of At, Ax = Ax( At). The con- 
sistency condition [3, p. 83] requires 

(6) lim (At/Ax) = 0. 
A t=O 

Received September 21, 1967. 

437 



438 PAUL GORDON 

Instead of proceeding in the time direction, the trick we employ is to suppose 
that the calculations proceed along the diagonals x + t = constant. That is, at the 
Nth step obtain the values of Ujn satisfying n + i = N + 2. This means that at the 
Nth step the following system of equations is to be solved: 

(7) (1 + )UiN?2-i - qUij'- = (1 - q)uiNi + qUi-i 1 < i <N. 

(If any of the other boundaries are encountered by the diagonal, the system of 
equations is simply cut off appropriately.) It is assumed that Uj U l, Ujl , UXl are 
known from the data, Eq. (2), and that the same bound is satisfied. 

(8) m = max [JUjfl, UjlU1, JUo'l, IU'j] . x, t 

Let 

(9) LJ4 = (1 - q)Ujn + qU;+l. 

Then Eq. (7) can be solved as follows: 
q 2 i- 2\i-2-v 

(10) (1 + q)Uk+2-i = \1N++q) U11 + LV 

Let 

(11) Tn= max {NU+11, ILvnvJ} . 
v 

Then, 

(12) IUN+2-il < LN. 

It remains to obtain a bound for LN. From Eqs. (9) and (10), after some manipula- 
tion, we obtain the following: 

(13) q(1 + q) Ui ? +-2 ( q q) E j1 + i)V 

(13) / + = 

+ (\ q )L'iVi 
+1 + D n-l-i 

Thus, 

(14) LN < max [LN-2, LN2 |LN11, I UN+ 1 1] 
But LN? and LN1 depend on the initial data. A simple series expansion shows that 

ILN, ? < C(At/Ax) + |UN0 I, 

where C is determined by the data. The same holds for LN1. Thus, 

(15) IUmnI < m + C- At 
wion (15) iAx 

where At! Ax satisfies Eq. (6). Equation (15) is now to be compared with Eq. (4). 
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