A Note on a Maximum Principle
for the DuFort-Frankel Difference Equation

By Paul Gordon
Consider the parabolic partial differential equation

1) ou/ot = o 8*u/ox’

where o is a positive constant.
Suppose initial and boundary conditions are given as follows:

u0,2) =filx): 0=z =a,
2) ut,0) =fot): O0=St=t,

u(t, 1/'1) = fa(t) . 0 <t= t .
Suppose that in the region 0 < ¢ < £, 0 = £ x4, this data determines a continu-
ously differentiable solution, u(¢, z), of Eq. (1). Let

3) m = max (@), 12@1, @11
It is well known that u(¢, x) satisfies the following boundedness property:

4) [u(t, )| < m.

A difference equation representation for Eq. (1) would be expected, if it is to be
convergent, to satisfy some kind of a bound similar to Eq. (3). The usual explicit and
implicit difference equations satisfy precisely this bound [3, p. 13 and p. 47]. It is
also well known that the DuFort-Frankel scheme satisfies some kind of a maximum
principle. If one works with the L.-norm, the form of the bound is quite clear [3, p.
83]. With respect to the maximum norm, it is also known that a maximum principle
holds [2, p. 127], but its form is somewhat obscure. The purpose of this note is to
derive the maximum principle satisfied by the DuFort-Frankel scheme in a relatively
elementary fashion and to exhibit the dependence of this bound on the initial data.

The DuFort-Frankel difference equation can be written as follows:

) A+ U™ =1 — U + qUia + Ury)
where
q = 20At/A2°, U] = U(nAt, jaz) .

Let us suppose that Az is specified as some function of A¢, Ax = Az(At). The con-
sistency condition [3, p. 83] requires

6) lim (At/Az) = 0.

At=0
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Instead of proceeding in the time direction, the trick we employ is to suppose
that the calculations proceed along the diagonals « 4 ¢ = constant. That is, at the
Nth step obtain the values of U, satisfyingn 4+ 7 = N + 2. This means that at the
Nth step the following system of equations is to be solved:

7N A+ QUi — U = 0 - QUM+ U, 1=<i=N.

(If any of the other boundaries are encountered by the diagonal, the system of
equations is simply cut off appropriately.) It is assumed that U2, U}, U", U, are
known from the data, Eq. (2), and that the same bound is satisfied.

(8) m = nIlatX [lUJ'O'; |Uf1|; onnly lU:l” .
Let
9) L= (1 - U+ qUi1.

Then Eq. (7) can be solved as follows:

. —2 —2 i—2—v
(10) (1 + QUiryo: = q( g ) Uk1 + =ZO (ﬁi—q) Ly, .

144
Let
(11) L, = max {|[Unya, [Lis]] -
Then,
(12) |Unyo—i] < Ty .

It remains to obtain a bound for Ly. From Egs. (9) and (10), after some manipula-
tion, we obtain the following:

i _ (g Yor 1 (e Y (1+4),.
Ln_i - _< > " < > <_—— g
 \T4g) U T\ Z ) B
q >Li—1.
+<1+q n—1—17 -
Thus,

(14) Ly < max [Lys, |Ly"l, |Ly_al, Ukl .

But Ly® and L' depend on the initial data. A simple series expansion shows that
|Ly"| £ C(aAt/Ax) + |UN],

where C' is determined by the data. The same holds for Ly!. Thus,

(13)

n At
< kil
(15) |Uf|=m+CAx’

where At/ Az satisfies Eq. (6). Equation (15) is now to be compared with Eq. (4).
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